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Phase synchronization of two-dimensional lattices of coupled chaotic maps
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Phase synchronized states can emerge in the collective behavior of an ensemble of two-dimensional chaotic
coupled map lattices, due to a nearest-neighbor interaction. A definition of phase is given for iterated systems,
which corresponds to the definition of phase in continuous systems. The transition to phase synchronization is
characterized in an ensemble of lattices of logistic maps, in terms of the phase synchronization ratio, the
average abnormal ratio, and conditional Lyapunov exponents. The largest Lyapunov exponent of the global
system\ ,,.x depends on both the number of coupled maps and the coupling strength. If the number of coupled
maps is over some threshold,,,, depends only on the coupling strength. The approach of nearest-neighbor
coupling is robust against a small difference in the map parameters.

PACS numbd(s): 05.45.Xt, 47.54+r

[. INTRODUCTION titatively characterize the PS. In Sec. IV we study the robust-
ness of PS against a small parameter mismatch. Finally, in
The synchronization of chaotic systems has attracted corec. V a brief discussion and summary are given.

siderable attention in recent yedis-6]. This synchroniza-
tion has clear applications to communications, control and Il. DESCRIPTION OF THE MODEL
anticontrol of chaos in biomedical systems, and system iden- ] ) )
tification. Most recently, the concept of chaos synchroniza- 1he system we studied consistsrof=NXN units, each
tion has been extended to that of phase synchronizgggn ~ ©f which is a logistic map. The dynamical properties of each
of chaotic systemg7]. In this process, the interaction of Map are determined by its parametgr’, which may be
nonidentical chaotic systems can lead to a perfect locking offifferent for each map. The variable of each mapis iter-
their phases, whereas their amplitudes remain uncorrelate@ted forward to time step+1 by
Phase locking of chaotic signals in large populations of i T i i
coupled dynamical units, where each separate unit may re- Xok1=Tij (Y oxph) = Y (1=xh), (1)
side on a chaotic attractor, is currently a subject of active
investigationg8]. This paper is devoted to this subject. Usu- Wherexe[0,1] andye[0,4]. Then for a 2D array consisting
ally, this PS phenomenon is observed and studied in continf®f NN oscillators with diffusive nearest-neighbor cou-
ous flows. Little attention is paid to PS in iterated systems. IrPling, the equation is
this paper we report a new phenomenon that the local activ-
ity.of each map can show PS. We will give a general defi- Wil - = ¢ (A Xi,j)+g[f_ (it Xi,j_l)
niton of PS in iterated systems and demonstrate that the “n+17" 1+ | W'Y 20T g LH-18Y" 5 %n
short-range(diffusive) interaction can also induce the net-

) ( _ a1 i~ wi-1]
work to display PS. The mechanism of PS can be quantita- (o g )+ (o Yoxy
tively characterized by appropriate measures, such as the PS

ratio, the average abnormal ratio, and conditional Lyapunov +fi+1’j(yi+l,1,xin+l,i)] ,

exponents, etc.

Spatiotemporal chaos and complex pattern formation has .
been studied extensively in networks of coupled ni&@ps0] Yi=y(1+ag ), 2
among which coupled map lattices are more simply orga-
nized objects due to a diffusive coupling. So far, the study ofvherei,j=1,2,... N, and y,e(3.57,4.0). « denotes the
globally coupled dynamical systems has revealed novel corstrength of nearest-neighbor couplirsgthe detuning coeffi-
cepts[11-13 such as clustering, chaotic itinerancy, and par-cient of parameter, ang, ; a random number betweenl
tial ordering. In the present paper, we are interested in thand 1, thusy"! is different for each unit. We will assume
network with diffusive nearest-neighbor coupling. We studyfree boundary conditions, i.e.x%=x x10=x"1xN*1]
the PS of two-dimensionaRD) coupled logistic maps and =x"J, andx"N*1=x"N, dependent on its previous state and
how the number of coupled elements, coupling strength, anthe average state of the nearest-neighbor maps. The value of
parameter mismatch affect the PS. the iteration at the given site is then normalized not to exceed
This paper is organized as follows. In Sec. Il we describel. Starting from this model, in the following we will first
our model of 2D coupled map lattices with nearest-neighbointroduce a definition of PS in iterated systems, then give a
interaction. In Sec. lll we investigate the behavior andquantitative characterization of PS, and finally explain the
mechanism of PS and define appropriate measures to quamechanism of PS.
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FIG. 1. Temporal evolution of the activities of the units in the
lattice for parametery,=3.755,a=0.0,a=1.0, andN=100. The
three displayed signals correspond to three different lattice units %
x5052 %4558 andx?312 respectively.
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FIG. 2. Phase state after 20000 iterations fgy=3.755,a
. ANALYSIS OF PS =0.0,a=1.0, andN= 100, where the black dots corresponding to
units having phase 1, and the empty area corresponding to units

First, we consider the case of identical units. Equat®n having phase 0.

describes the behavior XN identical coupled logistic

maps, allin the chaotic state. In the follqwmg, we focus Ourtively between 0 and 1, this definition guarantees theg-
attention on a system withN=100, starting from random

N " . " mains constant. Two questions may ari€g: Will r change
initial (_:ondlt_lons, f"md with free boqnda_\ry con_dltlons. O.urwith time when the coupling strength is fixed? (2) How
numerical simulation shows that with increasing coupling

strengtha, more and more units have a similar oscillatory does the coupling _strengtia affectr?_ . .
behavior ’This similarity will not change with time. We call o answer the ﬂr.St questpn, we investigate the PS Fat|o
the state.s that show local maxirrainima) at the sahe time corresponding to differeny in range (3.57,4.0). We find
; . .. that there are two kinds of differemtcorresponding to re-
as phase synchronized states. Figure 1 shows the oscnlato&(ons of 7o(3.57,3.677) and (3.678,4.0), respectivelyil
behaviors of three units for the coupling strengik-1.0. YOR39 1,9 016,2.9), IeSD w

X ; S : not change with time ifyy is in (3.57,3.677) and change
Obviously, they have maxim@ninima) at the same time but . 7. =% I .
different amplitudes. In fact, if we check the amplitudes ofW'th time if yo is in (3.678,4.0). Why do they show different

e o )
all the units at some time, we will find that these amplitudes o' ';Vr% 'fe'”utlgfl region ffvcifﬁ%;)e’ t‘)gpreﬁsisa%f ]
are chaotic. Now, the key problem is to find a good definition g y 9

of the phase in an iterated system. In continuous flows, thg' The phase series of the jjth lattice, P’ (for n

direction of trajectory corresponds to the zeroth Lyapunov— 1+2:3- - - ), i101010D. ... Wecall the chaotic behavior

exponent. Usually, the phase is defined as a variable th&f the @amplitude in this region of, (or whose phase has this
corresponds to the zeroth Lyapunov exponent of #roPerty as simple chaos. While in the regiory,
continuous-time dynamical system that displays chaotic be€ (3:678,4.0), the phase does not always change alterna-
havior [14]. We think that the phase of iterated systemst'Vely with time. It is possible for two consecu'iuye iterations
should have something to do with the direction of iteration.l0 have the same phase, such that eR' (for n

In order to quantitatively characterize the transition to PS in=1,2,3...) will be 010110100. ... Wecall the chaotic

iterated systems, we now define the phase of thigth lat- bﬁhaViOV of the ampllitudﬁ in this re%ion ofo lco.mplex .
tice P2 at some timen as chaos. To quantitatively characterize the complexity, we de-

fine an average abnormal ratio

(1, XX >
Pr'= 0, otherwise ® 1 > ! > 5
’ . B O'—?t:ONxN 5 O'll(t) ( )
As the units are always oscillatory, sarRg’ denote PS or
phase cluster. Figure 2 shows the results when1.0 and  Where
n=20000. From this figure one can see that at this moment SR
most of the units have phase 1 but a small part have phase 0. 1 it PY=PRLy
Now, we define the PS ratioas 7;,i()= 0, otherwise.
N N
1 i i For example, if the ph ies of tihg i
_ ij_ i ple, if the phase series of thgth lattice reads
' Nmeax{i,jl (Pr 1)’i,j2:1 (P=0)( ™ 910110100 . ., 0,, becomes 00010000 ... Hence, in

N N iterated systems, the chaotic behavior will be denoted as
where={, _;(P,/=1) and={,_,(P};’=0) denote the num- simple chaos, ifr=0, and as complex chaos, >0, re-
ber of units in phase 1 and the number of units in phase (spectively. Later, we will use this quantity to explain the
respectively. If the phases of all the units change alternaphenomenon that changes with the coupling strength
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FIG. 4. Relationship between the average abnormal ra@md
the coupling strengtla for y,=3.755. Inset: the local blowup for
ae[0.04,1.Q.
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connection between the two figures. When the coupling
strengtha is small (@<0.4), it suppresses the average ab-
normal ratio but is not enough to induce PS.1Ss in (0.5,
0.6). Whene is near 0.5 or 0.6, there is a jump farin Fig.

4. It corresponds to the part of rapidly increasingh Fig.
3(b). Whene is in the rangg 0.7,11.Q, both theo in Fig. 4
and ther in Fig. 3(b) are approximately constant. k&
>11.0, o begins to decrease andbegins to increase further.
So the average abnormal ratiois tightly connected withr.

o Because the>0 represents the intrinsic feature of complex
chaos, we cannot make the system become the case of simple
chaos witha>0 by finite coupling. That is the reason why
ther is difficult to reach 1.0. For illustrating it in more detail,
we investigate its Lyapunov exponent.

To answer the second question, we investigate the rela- /0" €ach map the coupling part in E@) (a/4)(f; ;.

tionship betweem and the coupling strength. We find that lwafi,j+t1+ fti ?ﬁl +ffi—1’i) can tbe treﬁéed ?Sttgn exter?ﬁl s(,jlgngl.
for simple chaosy will quickly reach 1.0 with increasing we treat the four nearest-neighbor lattices as the driving

coupling strengtha, while for complex chaosr quickly system and thg,jth lattice as the responding system, accord-

reaches some valugvhich is a little smaller than 1)0and ing to Pecora and Carrol's method], the cono_lltlonal
then very slowly approaches 1.0. Figure 3 shows two typica|'yapunOV exponent of response system can be given as
results, wherda) denotes the case of simple chaos &bd
the case of complex chaos. Asdepends on time fory T i L N RINE

nplex cn: _ 0 A =lim — ) log £ (Y X
=3.755, the points in Fig. 3 are long-time average. From MMzt | lta
Fig. 3@ one can see thatequals 1.0 ifa=0.55. That is, all
of the units have become phase synchronized. From Hiy. 3
one can see that quickly increases ifa is in the interval
[0.3~0.7] and then slowly increases with increasingThe
inset of this figure shows the local blowup far=[0.6,0.§. (6)
Comparing Fig. 83 with Fig. 3(b) we can see that the most .
obvious difference is thatcan reach 1.0 in Fig.(8) but not ~ From Eqg.(6) one can see thatg,, will decrease with in-
in Fig. 3(b). What is the reason? Now we use Eg).to give  creasinga. When\y{,<0, the unit {,j) will synchronize
an explanation. Here we focus on the case of complex chaasith its neighbors. Figure 5 shows the results of three typical
with o>0. Our numerical experiments show that the averageunits. Obviously, wherx>0.2, they all become negative. A
abnormal ratioo- will change with the coupling strength.  question may arise: why don’t we see the appearance of the
Figure 4 gives the relationship between the average abnoidentical synchronization wheny},<0? We know that in
mal ratio and the coupling strength when y,=3.755, Pecora and Carroll's methdd] there are only two systems.
where the inset shows the local blowup fere[0.04,1.Q. One is the driving system and the other is the response sys-
From Fig. 4 one can see that=0.095 if =0, and then tem. When the largest conditional Lyapunov exponent be-
quickly decreases ifr<0.05, followed by some platform if come negative, the response system will become synchro-
a € (0.05,11.0), and finally decreases agaimvi11.0. Ob-  nized with the driving system. However, in our case there are
viously, the coupling can reduce the average abnormal ratiour nearest-neighbor units, and the driving signal is the av-
o. What is the relationship betwean andr? Comparing erage of the four nearest-neighbor units. So the response sys-
Fig. 4 with Fig. 3b) one can see that there is some intrinsictem should go to the state corresponding to the average term.
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FIG. 3. Relationship betweenand coupling strengtla for N
=100. (8) yo=3.62; (b) y,=3.755, inset: local blowup forx
€[0.6,0.8.

1 . .
= lim = 2, [log(y"!]1-2x;']) ~log(1+ a)].
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FIG. 5. Conditional Lyapunov exponent for different siteg; and the parameter mismatch fg§=3.755,=1.0, andN=100.

=3.755 andN=100. Inset: plot of the conditional Lyapunov expo-
nent versus the logarithm aok. The transition values ofx for

Al =0 area=0.07,0.09, and 0.2, respectively.

the whole system displays periodic behavior. Fo+ 10,
Nmax IS positive for all coupling strengths, but shows large
fluctuations if ¢ increases. It illustrates that the global be-

As the average is different for each unit, it cannot lead to_havior is sensiti.ve fco the coupling and the boundary effect is
identical synchronization of all the units. The effect of the Important for this size of the network. FoF=100, A 4, has
average term is to change the running direction of the unifwo main values with increasing. Amay is at the higher
towards a common direction. Hence, the role of the averag¥@lue if @<0.02 and the lower value i&=0.4. The lower
term is to make the neighboring units have the same phas&lu€é 0fAmay corresponds to the state of PS. The region of
and lead all the units toward the state of PS. On the othet €[0.02,0.4 denotes the transition region in which the

hand, let\) =0 in Eq.(6), one can see that theis differ- ~ Phase behavior of the global system changes from an irregu-

con .
ent for different lattices i(j) because of the boundary ef- |2 State to the phase-synchronized stat ihcreases fur-

fects. From the inset of Fig. 5 one can see that the transitiof{1e": the curve ok, is just the same as fdd =100 except
values ofa are 0.07, 0.09, and 0.2, respectively. That is, affor @ smaller fluctuation. So i is over some threshold, the
the transition points ofAll =0, the needed coupling CUrVe OfAmaxbecomes smooth and does not dependloli
strength for boundary units is larger than for inner units. & is also over some threshold,max Will keep constant.

To characterize how the size of the network affects theHen_C_e we conclude that for larg¥, Eq. (2) can display_ .
global dynamical behavior of Eq2), we now compute the stabilized PS and the whole system cannot display periodic

behavior. For smalN, Eqg. (2) can show periodic behavior.
largest Lyapunov exponent of the global systam,, for : . . :
different N. Our numerical experiments reveal that,., de- As one knows, if all the units have become identically syn-

pends on both the si¢ and the coupling strengh. Figure chronized,\ 2 Will not change with increasing coupling.

6 shows the results. From this figure one can seeXhak _Our simulations show that all themay Will change Wi.th
will change with increasinge. For N=2, \,a iS negative if Increasinge except forN =2.50 only forN_=2 all the_umts
@e[0.2,0.3 or a[0.5,1.0. It means that the mutual inter- can show identical chaotic synchronization. It confirms that

action between the 22 units drive the whole system into the interaction behavior of an ensemble of coupled units is

periodic behavior. lla>2.0, \,,ax iS @approximately equal to more complex than that of a few units.

the Aay in case of no interaction. It illustrates that the 2

%2 coupled units have become identical synchronization. IV. ROBUSTNESS

ForN=4 anda>5.0, Anax becomes negative. It shows that | real systems, we cannot make all the units identical.

Here we consider the case that the paramegetdave ran-

| :N=100 :N=10 N=4 N=2_ | dom fluctuations. Every unit runs in a different chaotic re-
: gion. What is the behavior of the whole coupled system? Our

numerical simulation shows that PS can still appear wdaen

is over some thresholdr=0 leads to a more rapid and ro-

bust phase locking of the coupled maps tlan0. Figure 3

shows the result o&=0.02. From Figs. @) and 3b) one

can see that(«) for a=0.02 is approximately the same as

for a=0.0 except for some small fluctuations. It illustrates

that PS has some robustness against a parameter mismatch.
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041 0 20 A0, 00 % 0 On the other hand, because of the fluctuation of the pa-
— — — T T T T rameters, the behavior of the global system will have some
1x10 1x10 1x10 0.01 0.1 1 10 100 .
" changes. We use the largest Lyapunov expongpt, to il-

lustrate the changes. Figure 7 shows the result fgr
FIG. 6. Largest Lyapunov exponent for different siddsy, =3.755 if the coupling strengtlx=1.0. Obviously,\ yax
=3.755. Inset: plot of\ ., Versusa. shows fluctuations that become larger and larger with in-
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Additionally, the above results can be extended to 1D

045 sserann o bty

— coupled maps and other 2D coupled maps. For example, in
Y :a=0.

2D coupled Haon maps we observed a similar phenomenon
of PS; in 1D coupled logistic maps we observed some phase
clusters that have the same phase but different amplitudes.
So PS does not only appear in continuous systems, it can
also appear in iterated maps as an emergent phenomenon.
The deeper study shows that there are some scaling expo-
nents in coupled maps. This will be reported elsewhere.

In summary, we have considered a 2D network of coupled
logistic maps. We have shown that a phase synchronized
0% Ti0® | 1x10° 001 0.1 1 10 100 state can emerge in the collective behavior of an ensemble of

o chaotic coupled map lattices, due to a nearest-neighbor inter-
_ ) action. By introducing a definition of phase in iterated sys-

FIG. 8. Relationship between the largest Lyapunov exponeniams e can quantitatively characterize the features of PS in
and the coupling strength under different parameter mismatches f‘?ferated systems and explain the mechanism of transition to
¥0=3.755 andN=100. Inset: plot of\ 5, versusa. PS by the average abnormal ratio and the conditional

creasing parameter mismateh This can be explained as Lyapunov exponent. We call the case with=0 as simple
gp . P chaos and the case with>0 as complex chaos. In the case

foII_ows. If aincreases, the parameter difference between tw%f complex chaos, it is difficult to get the complete phase
units may become larger and the global system becomes '

S e X sSynchronization (=1). Furthermore, if the siz& of the
more complex. So this increases the difficulty of forming PS, : ; Lo
independently on the coupling strength. Figure 8 confirmsSyStem is small, the global system displays both periodic and
this result. In Fig. 8, one can see thatif 10, the exponents chaotic behavior. Whe is large, the global system dis-

_ . plays only chaotic behavior. Wheis over some threshold,
);mlaox f?r:ea;(gbonzer?tr: flc?{rE%réga:r;r:‘?uscetuf:tr;gg,roetjnndd IIﬁose the largest Lyapunov exponeiig,a, does only depend on the
for a=0. Thus, the global behavior of nonidentical units is coupling strength. For the case of different parameters, PS

sensitive to the coupling strength. Comparing Fig. 8 Wi,[hcan also be implemented except for a little fluctuation. So
Fig. 3 one can see that for the two casesaef0.0 anda this method of nearest-neighbor coupling is robust against a

=0.02 the difference oh .y in Fig. 8 is large while the small difference in the map parameters.
difference ofr in Flg 3 is small. ACKNOWLEDGMENTS
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