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Phase synchronization of two-dimensional lattices of coupled chaotic maps
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Phase synchronized states can emerge in the collective behavior of an ensemble of two-dimensional chaotic
coupled map lattices, due to a nearest-neighbor interaction. A definition of phase is given for iterated systems,
which corresponds to the definition of phase in continuous systems. The transition to phase synchronization is
characterized in an ensemble of lattices of logistic maps, in terms of the phase synchronization ratio, the
average abnormal ratio, and conditional Lyapunov exponents. The largest Lyapunov exponent of the global
systemlmax depends on both the number of coupled maps and the coupling strength. If the number of coupled
maps is over some threshold,lmax depends only on the coupling strength. The approach of nearest-neighbor
coupling is robust against a small difference in the map parameters.

PACS number~s!: 05.45.Xt, 47.54.1r
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I. INTRODUCTION

The synchronization of chaotic systems has attracted c
siderable attention in recent years@1–6#. This synchroniza-
tion has clear applications to communications, control a
anticontrol of chaos in biomedical systems, and system id
tification. Most recently, the concept of chaos synchroni
tion has been extended to that of phase synchronization~PS!
of chaotic systems@7#. In this process, the interaction o
nonidentical chaotic systems can lead to a perfect locking
their phases, whereas their amplitudes remain uncorrela
Phase locking of chaotic signals in large populations
coupled dynamical units, where each separate unit may
side on a chaotic attractor, is currently a subject of act
investigations@8#. This paper is devoted to this subject. Us
ally, this PS phenomenon is observed and studied in cont
ous flows. Little attention is paid to PS in iterated systems
this paper we report a new phenomenon that the local ac
ity of each map can show PS. We will give a general de
nition of PS in iterated systems and demonstrate that
short-range~diffusive! interaction can also induce the ne
work to display PS. The mechanism of PS can be quan
tively characterized by appropriate measures, such as th
ratio, the average abnormal ratio, and conditional Lyapu
exponents, etc.

Spatiotemporal chaos and complex pattern formation
been studied extensively in networks of coupled maps@9,10#
among which coupled map lattices are more simply or
nized objects due to a diffusive coupling. So far, the study
globally coupled dynamical systems has revealed novel c
cepts@11–13# such as clustering, chaotic itinerancy, and p
tial ordering. In the present paper, we are interested in
network with diffusive nearest-neighbor coupling. We stu
the PS of two-dimensional~2D! coupled logistic maps and
how the number of coupled elements, coupling strength,
parameter mismatch affect the PS.

This paper is organized as follows. In Sec. II we descr
our model of 2D coupled map lattices with nearest-neigh
interaction. In Sec. III we investigate the behavior a
mechanism of PS and define appropriate measures to q
PRE 621063-651X/2000/62~2!/2114~5!/$15.00
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titatively characterize the PS. In Sec. IV we study the robu
ness of PS against a small parameter mismatch. Finally
Sec. V a brief discussion and summary are given.

II. DESCRIPTION OF THE MODEL

The system we studied consists ofm5N3N units, each
of which is a logistic map. The dynamical properties of ea
map are determined by its parameterg i , j , which may be
different for each map. The variable of each mapxi , j is iter-
ated forward to time stepn11 by

xn11
i , j 5 f i , j~g i , j ,xn

i , j !5g i , j xn
i , j~12xn

i , j !, ~1!

wherexP@0,1# andgP@0,4#. Then for a 2D array consisting
of N3N oscillators with diffusive nearest-neighbor co
pling, the equation is

xn11
i , j 5

1

11a H f i , j~g i , j ,xn
i , j !1

a

4
@ f i , j 21~g i , j 21,xn

i , j 21!

1 f i , j 11~g i , j 11,xn
i , j 11!1 f i 21,j~g i 21,j ,xn

i 21,j !

1 f i 11,j~g i 11,j ,xn
i 11,j !#J ,

g i , j5g0~11aj i , j !, ~2!

where i , j 51,2, . . . ,N, and g0P(3.57,4.0). a denotes the
strength of nearest-neighbor coupling,a the detuning coeffi-
cient of parameter, andj i , j a random number between21
and 1, thusg i , j is different for each unit. We will assum
free boundary conditions, i.e.,x0,j5x1,j ,xi ,05xi ,1,xN11,j

5xN, j , andxi ,N115xi ,N, dependent on its previous state a
the average state of the nearest-neighbor maps. The valu
the iteration at the given site is then normalized not to exc
1. Starting from this model, in the following we will firs
introduce a definition of PS in iterated systems, then giv
quantitative characterization of PS, and finally explain t
mechanism of PS.
2114 ©2000 The American Physical Society
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III. ANALYSIS OF PS

First, we consider the case of identical units. Equation~2!
describes the behavior ofN3N identical coupled logistic
maps, all in the chaotic state. In the following, we focus o
attention on a system withN5100, starting from random
initial conditions, and with free boundary conditions. O
numerical simulation shows that with increasing coupli
strengtha, more and more units have a similar oscillato
behavior. This similarity will not change with time. We ca
the states that show local maxima~minima! at the same time
as phase synchronized states. Figure 1 shows the oscilla
behaviors of three units for the coupling strengtha51.0.
Obviously, they have maxima~minima! at the same time bu
different amplitudes. In fact, if we check the amplitudes
all the units at some time, we will find that these amplitud
are chaotic. Now, the key problem is to find a good definit
of the phase in an iterated system. In continuous flows,
direction of trajectory corresponds to the zeroth Lyapun
exponent. Usually, the phase is defined as a variable
corresponds to the zeroth Lyapunov exponent of
continuous-time dynamical system that displays chaotic
havior @14#. We think that the phase of iterated system
should have something to do with the direction of iteratio
In order to quantitatively characterize the transition to PS
iterated systems, we now define the phase of the (i , j )th lat-
tice Pn

i , j at some timen as

Pn
i , j5H 1, if xn

i , j /xn21
i , j .1;

0, otherwise.
~3!

As the units are always oscillatory, samePn
i , j denote PS or

phase cluster. Figure 2 shows the results whena51.0 and
n520 000. From this figure one can see that at this mom
most of the units have phase 1 but a small part have pha
Now, we define the PS ratior as

r 5
1

N3N
maxH (

i , j 51

N

~Pn
i , j51!, (

i , j 51

N

~Pn
i , j50!J , ~4!

where( i , j 51
N (Pn

i , j51) and( i , j 51
N (Pn

i , j50) denote the num-
ber of units in phase 1 and the number of units in phas
respectively. If the phases of all the units change alter

FIG. 1. Temporal evolution of the activities of the units in th
lattice for parametersg053.755,a50.0,a51.0, andN5100. The
three displayed signals correspond to three different lattice u
x50,52, x45,53, andx23,12, respectively.
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tively between 0 and 1, this definition guarantees thatr re-
mains constant. Two questions may arise:~1! Will r change
with time when the coupling strengtha is fixed? ~2! How
does the coupling strengtha affect r?

To answer the first question, we investigate the PS ratr
corresponding to differentg0 in range (3.57,4.0). We find
that there are two kinds of differentr corresponding to re-
gions ofg0(3.57,3.677) and (3.678,4.0), respectively.r will
not change with time ifg0 is in (3.57,3.677) and chang
with time if g0 is in (3.678,4.0). Why do they show differen
properties? Ifg0 is in the region (3.57,3.677), the phases
all the units are regularly changed with time between 1 a
0. The phase series of the (i , j )th lattice, Pn

i , j ~for n
51,2,3. . . ), is10101010 . . . . Wecall the chaotic behavior
of the amplitude in this region ofg0 ~or whose phase has thi
property! as simple chaos. While in the regiong0
P(3.678,4.0), the phase does not always change alte
tively with time. It is possible for two consecutive iteration
to have the same phase, such that e.g.,Pn

i , j ~for n
51,2,3. . . ) will be 0101101010 . . . . We call the chaotic
behavior of the amplitude in this region ofg0 complex
chaos. To quantitatively characterize the complexity, we
fine an average abnormal ratios:

s5
1

T (
t50

T
1

N3N (
i , j

s i , j~ t ! ~5!

where

s i , j~ t !5H 1, if Pn
i , j5Pn21

i , j ;

0, otherwise.

For example, if the phase series of thei , j th lattice reads
0101101010 . . . , s i , j becomes 000100000 . . . . Hence, in
iterated systems, the chaotic behavior will be denoted
simple chaos, ifs50, and as complex chaos, ifs.0, re-
spectively. Later, we will use this quantitys to explain the
phenomenon thatr changes with the coupling strengtha.

ts

FIG. 2. Phase state after 20 000 iterations forg053.755,a
50.0,a51.0, andN5100, where the black dots corresponding
units having phase 1, and the empty area corresponding to u
having phase 0.
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To answer the second question, we investigate the r
tionship betweenr and the coupling strengtha. We find that
for simple chaos,r will quickly reach 1.0 with increasing
coupling strengtha, while for complex chaos,r quickly
reaches some value~which is a little smaller than 1.0! and
then very slowly approaches 1.0. Figure 3 shows two typ
results, where~a! denotes the case of simple chaos and~b!
the case of complex chaos. Asr depends on time forg0
53.755, the points in Fig. 3 are long-time average. Fr
Fig. 3~a! one can see thatr equals 1.0 ifa>0.55. That is, all
of the units have become phase synchronized. From Fig.~b!
one can see thatr quickly increases ifa is in the interval
@0.3;0.7# and then slowly increases with increasinga. The
inset of this figure shows the local blowup foraP@0.6,0.8#.
Comparing Fig. 3~a! with Fig. 3~b! we can see that the mos
obvious difference is thatr can reach 1.0 in Fig. 3~a! but not
in Fig. 3~b!. What is the reason? Now we use Eq.~5! to give
an explanation. Here we focus on the case of complex ch
with s.0. Our numerical experiments show that the avera
abnormal ratios will change with the coupling strengtha.
Figure 4 gives the relationship between the average ab
mal ratio and the coupling strengtha when g053.755,
where the inset shows the local blowup foraP@0.04,1.0#.
From Fig. 4 one can see thats50.095 if a50, and then
quickly decreases ifa<0.05, followed by some platform i
aP(0.05,11.0), and finally decreases again ifa>11.0. Ob-
viously, the coupling can reduce the average abnormal r
s. What is the relationship betweena and r? Comparing
Fig. 4 with Fig. 3~b! one can see that there is some intrin

FIG. 3. Relationship betweenr and coupling strengtha for N
5100. ~a! g053.62; ~b! g053.755, inset: local blowup fora
P@0.6,0.8#.
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connection between the two figures. When the coupl
strengtha is small (a<0.4), it suppresses the average a
normal ratio but is not enough to induce PS. Sor is in ~0.5,
0.6!. Whena is near 0.5 or 0.6, there is a jump fors in Fig.
4. It corresponds to the part of rapidly increasingr in Fig.
3~b!. Whena is in the range@0.7,11.0#, both thes in Fig. 4
and the r in Fig. 3~b! are approximately constant. Ifa
.11.0,s begins to decrease andr begins to increase further
So the average abnormal ratios is tightly connected withr.
Because thes.0 represents the intrinsic feature of compl
chaos, we cannot make the system become the case of si
chaos withs.0 by finite coupling. That is the reason wh
ther is difficult to reach 1.0. For illustrating it in more detai
we investigate its Lyapunov exponent.

For each map the coupling part in Eq.~2! (a/4)( f i , j 21
1 f i , j 111 f i 11,j1 f i 21,j ) can be treated as an external sign
If we treat the four nearest-neighbor lattices as the driv
system and thei , j th lattice as the responding system, acco
ing to Pecora and Carroll’s method@1#, the conditional
Lyapunov exponent of response system can be given as

lcon
i , j 5 lim

M→`

1

M (
n51

logU 1

11a
f i , j8 ~g i , j ,xn

i , j !U
5 lim

M→`

1

M (
n51

@ log~g i , j u122xn
i , j u!2 log~11a!#.

~6!

From Eq. ~6! one can see thatlcon
i , j will decrease with in-

creasinga. When lcon
i , j ,0, the unit (i , j ) will synchronize

with its neighbors. Figure 5 shows the results of three typi
units. Obviously, whena.0.2, they all become negative. A
question may arise: why don’t we see the appearance of
identical synchronization whenlcon

i , j ,0? We know that in
Pecora and Carroll’s method@1# there are only two systems
One is the driving system and the other is the response
tem. When the largest conditional Lyapunov exponent
come negative, the response system will become sync
nized with the driving system. However, in our case there
four nearest-neighbor units, and the driving signal is the
erage of the four nearest-neighbor units. So the response
tem should go to the state corresponding to the average t

FIG. 4. Relationship between the average abnormal ratios and
the coupling strengtha for g053.755. Inset: the local blowup fo
aP@0.04,1.0#.
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As the average is different for each unit, it cannot lead
identical synchronization of all the units. The effect of t
average term is to change the running direction of the u
towards a common direction. Hence, the role of the aver
term is to make the neighboring units have the same ph
and lead all the units toward the state of PS. On the o
hand, letlcon

i , j 50 in Eq.~6!, one can see that thea is differ-
ent for different lattices (i , j ) because of the boundary e
fects. From the inset of Fig. 5 one can see that the trans
values ofa are 0.07, 0.09, and 0.2, respectively. That is,
the transition points oflcon

i , j 50, the needed coupling
strength for boundary units is larger than for inner units.

To characterize how the size of the network affects
global dynamical behavior of Eq.~2!, we now compute the
largest Lyapunov exponent of the global systemlmax for
different N. Our numerical experiments reveal thatlmax de-
pends on both the sizeN and the coupling strengtha. Figure
6 shows the results. From this figure one can see thatlmax
will change with increasinga. For N52, lmax is negative if
aP@0.2,0.3# or aP@0.5,1.0#. It means that the mutual inter
action between the 232 units drive the whole system int
periodic behavior. Ifa.2.0, lmax is approximately equal to
the lmax in case of no interaction. It illustrates that the
32 coupled units have become identical synchronizati
For N54 anda.5.0, lmax becomes negative. It shows th

FIG. 5. Conditional Lyapunov exponent for different sites:g0

53.755 andN5100. Inset: plot of the conditional Lyapunov expo
nent versus the logarithm ofa. The transition values ofa for
lcon

i , j 50 area50.07, 0.09, and 0.2, respectively.

FIG. 6. Largest Lyapunov exponent for different sizesN: g0

53.755. Inset: plot oflmax versusa.
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the whole system displays periodic behavior. ForN510,
lmax is positive for all coupling strengthsa, but shows large
fluctuations ifa increases. It illustrates that the global b
havior is sensitive to the coupling and the boundary effec
important for this size of the network. ForN5100, lmax has
two main values with increasinga. lmax is at the higher
value if a<0.02 and the lower value ifa>0.4. The lower
value oflmax corresponds to the state of PS. The region
aP@0.02,0.4# denotes the transition region in which th
phase behavior of the global system changes from an irre
lar state to the phase-synchronized state. IfN increases fur-
ther, the curve oflmax is just the same as forN5100 except
for a smaller fluctuation. So ifN is over some threshold, th
curve oflmax becomes smooth and does not depend onN. If
a is also over some threshold,lmax will keep constant.
Hence we conclude that for largeN, Eq. ~2! can display
stabilized PS and the whole system cannot display perio
behavior. For smallN, Eq. ~2! can show periodic behavior
As one knows, if all the units have become identically sy
chronized,lmax will not change with increasing coupling
Our simulations show that all thelmax will change with
increasinga except forN52. So only forN52 all the units
can show identical chaotic synchronization. It confirms th
the interaction behavior of an ensemble of coupled units
more complex than that of a few units.

IV. ROBUSTNESS

In real systems, we cannot make all the units identic
Here we consider the case that the parametersg i , j have ran-
dom fluctuations. Every unit runs in a different chaotic r
gion. What is the behavior of the whole coupled system? O
numerical simulation shows that PS can still appear whea
is over some threshold.s50 leads to a more rapid and ro
bust phase locking of the coupled maps thans.0. Figure 3
shows the result ofa50.02. From Figs. 3~a! and 3~b! one
can see thatr (a) for a50.02 is approximately the same a
for a50.0 except for some small fluctuations. It illustrat
that PS has some robustness against a parameter mism

On the other hand, because of the fluctuation of the
rameters, the behavior of the global system will have so
changes. We use the largest Lyapunov exponentlmax to il-
lustrate the changes. Figure 7 shows the result forg0
53.755 if the coupling strengtha51.0. Obviously,lmax
shows fluctuations that become larger and larger with

FIG. 7. Relationship between the largest Lyapunov expon
and the parameter mismatch forg053.755,a51.0, andN5100.
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2118 PRE 62BAMBI HU AND ZONGHUA LIU
creasing parameter mismatcha. This can be explained a
follows. If a increases, the parameter difference between
units may become larger and the global system beco
more complex. So this increases the difficulty of forming P
independently on the coupling strength. Figure 8 confir
this result. In Fig. 8, one can see that ifa,10, the exponents
lmax for a50.02 are larger than those fora50.0, and ifa
.10, the exponents fora50.02 are fluctuating around thos
for a50. Thus, the global behavior of nonidentical units
sensitive to the coupling strength. Comparing Fig. 8 w
Fig. 3 one can see that for the two cases ofa50.0 anda
50.02 the difference oflmax in Fig. 8 is large while the
difference ofr in Fig. 3 is small.

V. DISCUSSION AND CONCLUSIONS

The above results are obtained by free-end conditions,
our numerical experiments show that they are also correc
periodic boundary conditions except for small differenc

FIG. 8. Relationship between the largest Lyapunov expon
and the coupling strength under different parameter mismatche
g053.755 andN5100. Inset: plot oflmax versusa.
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Additionally, the above results can be extended to
coupled maps and other 2D coupled maps. For example
2D coupled He´non maps we observed a similar phenomen
of PS; in 1D coupled logistic maps we observed some ph
clusters that have the same phase but different amplitu
So PS does not only appear in continuous systems, it
also appear in iterated maps as an emergent phenome
The deeper study shows that there are some scaling e
nents in coupled maps. This will be reported elsewhere.

In summary, we have considered a 2D network of coup
logistic maps. We have shown that a phase synchron
state can emerge in the collective behavior of an ensemb
chaotic coupled map lattices, due to a nearest-neighbor in
action. By introducing a definition of phase in iterated sy
tems, we can quantitatively characterize the features of P
iterated systems and explain the mechanism of transitio
PS by the average abnormal ratios and the conditional
Lyapunov exponent. We call the case withs50 as simple
chaos and the case withs.0 as complex chaos. In the cas
of complex chaos, it is difficult to get the complete pha
synchronization (r 51). Furthermore, if the sizeN of the
system is small, the global system displays both periodic
chaotic behavior. WhenN is large, the global system dis
plays only chaotic behavior. WhenN is over some threshold
the largest Lyapunov exponentlmax does only depend on th
coupling strength. For the case of different parameters,
can also be implemented except for a little fluctuation.
this method of nearest-neighbor coupling is robust again
small difference in the map parameters.
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